Qdrant
Qdrant is a high-performance vector database for semantic search, recommendations, and RAG (Retrieval-Augmented Generation) applications.
Setup
# .env QDRANT_URL=https://... QDRANT_API_KEY=... QDRANT_COLLECTION=documents
Storing vectors
capabilityId: qdrant-upsert
provider:
type: qdrant
operation: upsert
inputs:
collection:
type: string
points:
type: array
items:
type: object
properties:
id: string
vector: array
payload: object
outputs:
status:
type: stringSemantic search
capabilityId: qdrant-search
provider:
type: qdrant
operation: search
inputs:
collection:
type: string
vector:
type: array
items:
type: number
limit:
type: number
default: 10
outputs:
results:
type: array
items:
type: object
properties:
id: string
score: number
payload: objectRAG workflow example
workflowId: rag-query
version: 1.0.0
steps:
- id: generate-embedding
capability: openai-embeddings
inputs:
text: ${input.query}
- id: search-documents
capability: qdrant-search
inputs:
collection: "documents"
vector: ${steps.generate-embedding.output.embedding}
limit: 5
- id: generate-answer
capability: openai-chat
inputs:
messages:
- role: "system"
content: "Answer based on the context provided"
- role: "user"
content: |
Context: ${steps.search-documents.output.results}
Question: ${input.query}